(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(0, y) → 0
-(x, 0) → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(0', y) → 0'
-(x, 0') → x
-(x, s(y)) → if(greater(x, s(y)), s(-(x, p(s(y)))), 0')
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
if/0
if/2
greater/0
greater/1
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(0', y) → 0'
-(x, 0') → x
-(x, s(y)) → if(s(-(x, p(s(y)))))
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
-(0', y) → 0'
-(x, 0') → x
-(x, s(y)) → if(s(-(x, p(s(y)))))
p(0') → 0'
p(s(x)) → x
Types:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: 0':s:if → 0':s:if
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
gen_0':s:if2_0 :: Nat → 0':s:if
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
-
(8) Obligation:
Innermost TRS:
Rules:
-(
0',
y) →
0'-(
x,
0') →
x-(
x,
s(
y)) →
if(
s(
-(
x,
p(
s(
y)))))
p(
0') →
0'p(
s(
x)) →
xTypes:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: 0':s:if → 0':s:if
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
gen_0':s:if2_0 :: Nat → 0':s:if
Generator Equations:
gen_0':s:if2_0(0) ⇔ 0'
gen_0':s:if2_0(+(x, 1)) ⇔ s(gen_0':s:if2_0(x))
The following defined symbols remain to be analysed:
-
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s:if2_0(
a),
gen_0':s:if2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
-(gen_0':s:if2_0(a), gen_0':s:if2_0(0))
Induction Step:
-(gen_0':s:if2_0(a), gen_0':s:if2_0(+(n4_0, 1))) →RΩ(1)
if(s(-(gen_0':s:if2_0(a), p(s(gen_0':s:if2_0(n4_0)))))) →RΩ(1)
if(s(-(gen_0':s:if2_0(a), gen_0':s:if2_0(n4_0)))) →IH
if(s(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
-(
0',
y) →
0'-(
x,
0') →
x-(
x,
s(
y)) →
if(
s(
-(
x,
p(
s(
y)))))
p(
0') →
0'p(
s(
x)) →
xTypes:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: 0':s:if → 0':s:if
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
gen_0':s:if2_0 :: Nat → 0':s:if
Lemmas:
-(gen_0':s:if2_0(a), gen_0':s:if2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:if2_0(0) ⇔ 0'
gen_0':s:if2_0(+(x, 1)) ⇔ s(gen_0':s:if2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:if2_0(a), gen_0':s:if2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
-(
0',
y) →
0'-(
x,
0') →
x-(
x,
s(
y)) →
if(
s(
-(
x,
p(
s(
y)))))
p(
0') →
0'p(
s(
x)) →
xTypes:
- :: 0':s:if → 0':s:if → 0':s:if
0' :: 0':s:if
s :: 0':s:if → 0':s:if
if :: 0':s:if → 0':s:if
p :: 0':s:if → 0':s:if
hole_0':s:if1_0 :: 0':s:if
gen_0':s:if2_0 :: Nat → 0':s:if
Lemmas:
-(gen_0':s:if2_0(a), gen_0':s:if2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s:if2_0(0) ⇔ 0'
gen_0':s:if2_0(+(x, 1)) ⇔ s(gen_0':s:if2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:if2_0(a), gen_0':s:if2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)